miércoles, 9 de diciembre de 2009

Sólido por revolución

En este ejercicio de Sólido por revolución hicimos uso de varios conceptos como son:

El número áureo o de oro (también llamado número dorado, razón áurea, razón dorada, media áurea, proporción áurea y divina proporción) representado por la letra griega φ (fi) (en honor al escultor griego Fidias), es el número irracional:

\varphi = \frac{1 + \sqrt{5}}{2} \approx 1,618033988749894848204586834365638...

Se trata de un número algebraico que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como “unidad” sino como relación o proporción entre segmentos de rectas. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza en elementos tales como caracolas, nervaduras de las hojas de algunos árboles, el grosor de las ramas, etc.

Asimismo, se atribuye un carácter estético especial a los objetos que siguen la razón áurea, así como una importancia mística. A lo largo de la historia, se le ha atribuido importancia en diversas obras de arquitectura y otras artes, aunque algunos de estos casos han sido objetables para las matemáticas y la arqueología.

Para construir un volumen podemos pensar en términos de sus secciones transversales, es decir, en como la forma puede ser cortada en rodajas, a intervalos regulares, de lo que derivan los planos seriados que fue lo que utilizamos.

Utilizamos 24 modulos identicos hechos en carton bateria grueso, a partir de una figura hecha con seccion aurea, los odulos cuentas con una base la cual a su vez le da una rotación a tods los modulos formando una sensacion de revolución.

Los modulos tienes una degradación de color y cuenta con un modulo de ejemplar.

No hay comentarios:

Publicar un comentario